

High-Performance Computing
Algorithm Analysis

A Tarari White Paper

High-Performance Computing Algorithm Analysis

This page intentionally left blank

Page 2 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Executive Summary.. 4
Overview of Tarari Solution.. 5

Content Processing Controller ... 5
Content Processing Engine ... 6
Zero Bus Turnaround, Synchronous Static RAM (ZBT SSRAM).......... 9
Double Data Rate, Synchronous Dynamic RAM (DDR Memory)........10
Workflow on the Tarari Processor ...10

Evaluating Applications for the Tarari Processor...................... 12
A—Algorithm Acceleration ...12
B—Benefits of Offloading...16
C—Compatibility of Hardware Platform and Algorithm....................19
D—Dynamically Reconfigurable Hardware21

Algorithm Analysis Examples ... 23
1. Biotechnology Research...23
2. Cryptography Acceleration Agent Set24

Appendix A—Summary of Guidelines.. 28
Appendix B—Advanced Topics .. 30

Page 3 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Executive Summary

The Tarari® High-Performance Computing Processor accelerates
the execution of complex algorithms used in high-performance
computing (HPC) applications. The Processor allows high-
performance computing users in industry, government and
education to accelerate complex and compute-intensive
applications in areas such as:

• Biotech

• Embedded HPC for signal processing

• Embedded HPC for image processing

• Communications

• Entertainment

• Seismic

• Financial/commercial

Tarari High Performance Computing Processors (or “Tarari
Processors”) accelerate complex algorithms by moving the core
algorithms off of traditional processors and into reconfigurable
logic. The Tarari Processor is based on dynamically
reconfigurable hardware, which means that multiple “agent”
algorithms (code for reconfigurable logic) can be loaded or
changed “on the fly” by user software on the host processor.
Dynamic reconfigurability also allows for easy upgrades and
further improvements in acceleration.

Using this document, system designers can determine whether
their particular applications are good candidates for acceleration
of certain algorithms on a Tarari Processor. The document ends
with concrete examples of applying the Tarari Solution.

Page 4 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Overview of Tarari Solution

The Tarari Solution is:

• the Tarari Processor, based on an integrated processing
platform (see

);
Figure 1--Tarari Processing Platform Block

Diagram

Figure 1--Tarari Processing Platform Block Diagram

Content
Processing
Controller

(CPC)

DDR SDRAM
256 MB

Content
Processing

Engine

(CPE)

Content
Processing

Engine

(CPE)

ZBT SSRAM 1 MB

CPE Bus
532 MB/s

16-bit

2.128 GB/s
64-bit

528 MB/s
64-bit

PCI Bus

ZBT SSRAM 1 MB

ZBT SSRAM 1 MB

ZBT SSRAM 1 MB

266 MB/s
18-bit

266 MB/s
18-bit

CPE to CPE Bus
64-bit

CPE Bus
532 MB/s

16-bit

Content
Processing
Controller

(CPC)

DDR SDRAM
256 MB

Content
Processing

Engine

(CPE)

Content
Processing

Engine

(CPE)

ZBT SSRAM 1 MB

CPE Bus
532 MB/s

16-bit

2.128 GB/s
64-bit

528 MB/s
64-bit

PCI Bus

ZBT SSRAM 1 MB

ZBT SSRAM 1 MB

ZBT SSRAM 1 MB

266 MB/s
18-bit

266 MB/s
18-bit

CPE to CPE Bus
64-bit

CPE Bus
532 MB/s

16-bit

• reconfigurable logic that can target specific compute-
intensive tasks and decrease the processing time required
to perform them.

Content Processing Controller

The Content Processing Controller is the heart of the Tarari
Processor, connecting the PCI bus, DDR SDRAM (“DDR
memory”), and the Content Processing Engines. It also contains
the Configuration Logic, which initializes and dynamically
reconfigures Acceleration Agent Sets that are loaded into the
Engines. With four independent busses, the Content Processing
Controller allows multiple algorithms to run simultaneously, and
it allows data to move to and from the onboard DDR memory at
high speed.

The importance of the Content Processing Controller is that it
drives reconfigurable logic on the Tarari Processor. It can
dynamically reconfigure Acceleration Agent Sets (groups of
acceleration agents that solve particular problems and run in the
Content Processing Engines) within 30 milliseconds so that they
can solve different problems or even different parts of the same
problems.

Reconfigurable logic:

• provides the ability to load new agents to partially or
completely change functionality, without requiring
changes to the hardware;

Page 5 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

• can load new agents while existing agents continue
processing;

• does not require a system re-boot.In the example shown
in , the Content Processing
Controller reconfigures logic on the Tarari processor to change it
from an SSL accelerator to an SSL/XML/GZIP accelerator. Note
that some of the RSA capacity is reconfigured for XML parsing
and the DES/3DES capacity is reconfigured for GZIP (green
dashed outline), while RNG and some RSA capacity remain
unchanged (red outline)*. The option of reconfiguring all or part
of the logic—“partial reconfigurability”—is another feature of the
Tarari Processor.

Figure 2--Reconfigurable Logic

Figure 2--Reconfigurable Logic

Logic “Layout” on Tarari
Processor before
Reconfiguration

Logic “Layout” on Tarari

Processor after
Reconfiguration

RSA RSA

RNG RNG

RSA XML - Parsing

DES/3DES GZIP Compression

Unused DES

Finally, the Content Processing Controller’s capacity for
managing traffic and processes such as agent-chaining (see
below) on the Tarari Processor is what permits the Content
Processing Engines to achieve algorithm acceleration and higher
overall system performance, while insulating the designer from
the details of bus management and intelligent data management.

Content Processing Engine

In the Tarari Processor are two Content Processing Engines.
These Engines embody reconfigurable logic in the form of
hardware gates, Block-RAM (“BRAM”), and specialized functions
such as multipliers and clock managers. At system startup a
software-based Agent Configuration Manager loads the

Page 6 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

application-specific Acceleration Agent Sets into reconfigurable
logic in the Engines to accelerate algorithms and applications.
With the tremendous flexibility of the Engines, users enjoy high-
performance computing benefits such as:

• Pipelining—Pipelining allows all instructions in an
algorithm to execute on every clock cycle. Unlike a
traditional processor (where the instructions are fetched,
decoded and then executed), each element of the logic on
a Tarari processor can be executed at the same time. This
is similar to a “bucket brigade” which moves water from
each person to the next, with each bucket moving at the
same time. Each piece of logic “executes” at the same
time.

Clock Tick
1

Operation “A”
performed

Input Datastream

Clock Tick
2

Operation “B”
performed

Clock Tick
Y

Operation “C”
performed

Clock Tick
Z

Operation “D”
performed

Output Datastream

Figure 3--Pipelining

The ability to register intermediate results allows for a
higher clock rate of logic design and higher throughput.
This results in less idle capacity on the Tarari Processor
and an increase in the number of instructions that can be
performed during a given time period. Even if there is
some sequential dependency, a pipelined application can
take advantage of those operations that can proceed
concurrently.

• Parallelism—It is possible for multiple instantiations of
an agent or multiple agents to be executed in parallel. In

Page 7 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

a regular expression matching application, the benefits of
acceleration are multiplied

Clock Tick
1

Operation “A”
performed

Input Datastream

Clock Tick
2

Operation “B”
performed

Clock Tick
Y

Operation “C”
performed

Clock Tick
Z

Operation “D”
performed

Output Datastream

Operation “A”
performed

Operation “B”
performed

Operation “C”
performed

Operation “D”
performed

Operation “A”
performed

Operation “B”
performed

Operation “C”
performed

Operation “D”
performed

Operation “A”
performed

Operation “B”
performed

Operation “C”
performed

Operation “D”
performed

Figure 4--Parallelism

as more instantiations of the same agent are added to the
Acceleration Agent Set. Five instantiations working in
parallel can process five times the data.

• Agent-Chaining—This is one of the most important
techniques of which high-performance applications on the
Tarari Processor can take advantage. In agent-chaining,
the output from one algorithm (or Agent) can be used as
the input for another algorithm, while still staying on the
board and without going back to the PCI bus.

Consider the example of pattern-matching in aerial
photos, employing several different agents in the same
Acceleration Agent Set. Compressed images are streamed
onto the Tarari Processor and decompressed by the
algorithm in the first agent. The resulting images are
handed off to a pattern-matching algorithm in a second
agent. For exact matches, a value is returned to the host
application; fuzzy matches are handed off to a scoring
algorithm in yet a third agent.

Page 8 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Clock Tick
1

Thread 1
Operation “C”

Input Datastream

Agent 1

Clock Tick
Y

Thread 1
Operation “A”

Clock Tick
Z

Thread 1
Operation “B”

Output Datastream

Thread 2
Operation “C”

Thread 2
Operation “A”

Thread 2
Operation “B”

Thread 2
Operation “C”

Thread 3
Operation “A”

Thread 3
Operation “B”

Thread n
Operation “C”

Thread n
Operation “A”

Thread n
Operation “B”

Agent 2

Figure 5--Agent-Chaining

Another example is that of a MIME-encoded, compressed
e-mail attachment. In the Tarari Solution, one
acceleration agent decodes the stream of data, then
hands off its result to a waiting decompression agent.
Once all processing is finished, the encoded,
decompressed data are sent back to the host application.

For example, Acceleration Agent Sets for cryptography
could perform tasks such as the RSA, SHA1, and 3DES
algorithms, both pipelined (to execute all stages of all
algorithms) and in parallel (through multiple
instantiations). Dedicating these tasks to the Tarari
Processor not only offloads them from the host processor,
but also accelerates the processing of encrypted traffic on
the host system.

Zero Bus Turnaround, Synchronous Static RAM (ZBT SSRAM)

Each Content Processing Engine has two Zero Bus Turnaround
SSRAM modules available as low-latency, high-speed access to
scratch-pad memory during operations. These SSRAMs are also
available for caching local variables. Each of the two 18-bit
SSRAMs can be accessed separately or combined for 36-bit
operations.

Page 9 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Double Data Rate, Synchronous Dynamic RAM (DDR Memory)

While the Content Processing Controller manages the movement
and processing of data on the Processor, it uses Double Data
Rate, Synchronous Dynamic RAM as its workspace. DDR memory
is used for:

• high-speed Direct Memory Access (DMA) transfers
between the host processor and the Tarari Processor over
the PCI bus

• local storage for data being processed

• storage for acceleration Agents, to allow for immediate
reconfiguration of logic

Workflow on the Tarari Processor

So, a typical application will flow as follows:

C onten t
P rocessing
C ontro lle r

(C P C)

D D R S D R AM
256 M B

C ontent
P rocess ing

E ng ine

(C P E)

C ontent
P rocessing

E ng ine

(C P E)

ZB T S S R AM 1 M B

C P E B us
532 M B /s

16-b it

2 .128 G B /s
64-b it

528 M B /s
64-b it

P C I B us

ZB T S S R AM 1 M B

ZB T S S R AM 1 M B

ZB T S S R AM 1 M B

266 M B /s
18-b it

266 M B /s
18-b it

C P E to C P E B u s
64-b it

C P E B us
532 M B /s

16-b it

C on ten t P rocess ing P latfo rm (C P P)
Functional B lock D iag ram

C ontent
P rocessing
C ontro lle r

(C P C)

D D R S D R AM
256 M B

C ontent
P rocess ing

E ng ine

(C P E)

C ontent
P rocessing

E ng ine

(C P E)

ZB T S S R AM 1 M B

C P E B us
532 M B /s

16-b it

2 .128 G B /s
64-b it

528 M B /s
64-b it

P C I B us

ZB T S S R AM 1 M B

ZB T S S R AM 1 M B

ZB T S S R AM 1 M B

266 M B /s
18-b it

266 M B /s
18-b it

C P E to C P E B u s
64-b it

C P E B us
532 M B /s

16-b it

C on ten t P rocess ing P latfo rm (C P P)
Functional B lock D iag ram

1) At system startup, the Agent Configuration Manager
sends one or more Acceleration Agent Sets into DDR
memory. The Content Processing Controller then loads, or
instantiates, them into the Content Processing Engine(s).
This is analogous to the Controller “flashing” the Engines
with images of the agent sets.

2) The application on the host processor sends data over the
PCI bus to the Processor, and the Controller stores the
data temporarily in DDR memory.

3) The agent in the Engine fetches data across the Controller
from DDR memory using one of three memory access
modes (Direct, Streaming, and Transaction-based) and
executes the algorithm on the data. The Engine may use
Zero Bus Turnaround memory for lookup tables and as
scratch-pad. If the agent takes advantage of parallelism,
the Engines will execute different parts of the algorithm
simultaneously.

Page 10 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

4) The agent sends the result of the calculations back across
the Controller to DDR memory.

5) If the agent takes advantage of pipelining or agent-
chaining, another agent can now operate on the result by
again calling it from DDR memory; otherwise, the
Controller returns the result over the PCI bus to the host
processor.

Page 11 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Evaluating Applications for the Tarari Processor

Applications that benefit the most from the Tarari Processor
adhere to all or most of the following “A-B-C-D” guidelines,
detailed below:

• A—Algorithm Acceleration—The algorithms run faster on
the Tarari Processor than on the host processor.

• B—Benefits of Offloading—The overall system runs faster
if some algorithms are offloaded.

• C—Compatibility of Hardware Platform and Algorithm—
The algorithms are suitable for instantiation into the
Tarari Processor.

• D—Dynamically Reconfigurable Hardware—The application
or algorithms have functionality that changes over time.

A—Algorithm Acceleration

BENEFIT: By implementing one or more algorithms in hardware,
the Tarari Processor can increase the overall performance of an
application by accelerating those algorithms, and offloading them
from the host processor.

METRIC: If the round-trip time between the host processor and
the Tarari Processor is less than the time in which the host
processor can process the algorithm by itself, the application is a
candidate for the Tarari Solution. So, given that

Factor of
acceleration

Algorithm processing time on host processor

(Algorithm processing time on Tarari Processor +
PCI bus transfer time)

=

the higher the Factor of acceleration, the better suited the
application to the Tarari Solution. However, the overall
acceleration of the entire application will only increase as the
percentage of the accelerated algorithm increases when
compared with the total algorithm or application.

For example, if we accelerate 20% of the total algorithm
infinitely fast (so that it takes zero time to execute), then the
entire algorithm will run in only 80% of the original time: a 25%
improvement in performance. In the case of an accelerated
algorithm being 50% of the total algorithm or application, the
maximum possible increase would be 100%; i.e., the program
runs twice as fast. Of course, the time to execute cannot reach
zero, so actual performance improvements are also a function of
the code efficiency on the reconfigurable logic.

Page 12 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Determining the Algorithm Processing Time

Estimating the algorithm processing time on both the host
processor and the Tarari Processor requires careful engineering
analysis, because it is dependent on many variables in the
hardware and software design. Cycles-per-byte values for a
variety of commonly used algorithms and applications (3DES,
SHA-1, MD5, variants of AES and RC4 are used to protect online
transactions) appear in

, and clock cycles can also be measured while
running algorithms obtained from standard libraries. The cycles-
per-byte ratio represents the “compute-to-communicate”
relationship at work, since all algorithms require some
combination of both factors.

Figure 6--Selected Algorithms—CPU
Cycles/Byte Ratio

Calculating the PCI Bus Transfer Time
This example shows how to calculate the bus transfer time for a
specific host platform. It makes these assumptions about the
hardware characteristics of the platform being evaluated:

• 64-bit/66MHz PCI bus

• 50% PCI bus efficiency

• 2.4GHz CPU
The following calculations lead to a net cycles-per-byte ratio:

Step Calculation Result

PCI bus (64-
bit/66MHz)
throughput

64 bits/cycle x 66
million cycles/second

4,224 million
bits/second

Equivalent in bytes 4,224 million
bits/second ÷ 8

bits/byte

528 million
bytes/second

Cycles required to
transfer one byte

(2.4GHz CPU)

2.4 billion
cycles/second ÷ 528
million bytes/second

4.5 cycles/byte
(approximate)

Assuming the output is approximately the same size as the
input—see “ ” below—this figure
must be doubled, because the transaction is not complete until
the data travels in both directions: to the Tarari Processor, and
then back to the host processor. This would result in a figure of 9
cycles per byte if the PCI bus ran at 100% efficiency.

Algorithm Input-to-Output Ratio

However, given the overhead involved in preparing and sending
data across the bus, including generating host interrupts, a PCI
bus-efficiency of 50% is much more realistic. The result in this
example is, therefore, 18 cycles to transfer one byte of data
round-trip across the PCI bus; so for an algorithm to be a good

Page 13 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

candidate for acceleration, that algorithm must execute in
hardware at least 18 cycles per byte faster than the host
processor could execute the algorithm (just to account for PCI
bus transfers). If the data is streaming on and off the Tarari
Processor, then the impact of this calculation is reduced as the
latency for the calculation is a fixed amount of time.

F

P

CPU Cycles / Byte

0

20

40

60

80

100

120

140

160

CPU Cycles / Byte

CPU Cycles/Byte 144.4 58.6 35.9 18.1 14 11.5 7

3DES SHA-1 MD5
AES

 Open
SSL

AES
(assem

bler)

RC4
 Open

SSL

RC4
(assem

bler)

Round Trip
on 2.4GHz
PCI bus: 18
cycles (50%
efficiency)

Source: Tarari Inc.**

igure 6--Selected Algorithms—CPU Cycles/Byte Ratio

Another paradigm is that of “compute vs. communicate”.
 maps a range of

commonly used algorithms by comparing compute cycles and
bandwidth. The 3DES algorithm, for example, is a good
candidate for acceleration, because the encryption processing
typically runs on 90% of the data. The RSA algorithm is an even
better candidate because its complex calculations require
simultaneous multiplication of very large numbers. These
calculations might consume 80% to 90% of the host processor’s
total compute cycles.

Figure
7--Algorithm Types—Compute vs. Communicate

age 14 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Cycles
(Compute)

Bandwidth
(Communicate)

RSA

Blast
XML Parsing

Wildcard
Pattern-Matching

3DES Encryption

Non-Wildcard
Pattern-Matching

AES Encryption
PRNG

Regular Expression
(RegEx)

Pattern-Matching

Image
Scanning

Smith
Waterman

Figure 7--Algorithm Types—Compute vs. Communicate

Other Factors

Algorithm Input-to-Output Ratio

For some algorithms, all data is transferred to the Tarari
Processor, but once the data is processed there, the Tarari
Processor passes back only a short result. In virus scanning, for
example, a large stream of data crosses the bus from host
memory to DDR memory for processing, and a relatively small
quantity of data (the result of the scan) is returned with only an
indication of whether the data is free from viruses. For this type
of application, a transfer rate of up to 2 Gbps is possible. For
other algorithms, the entire data set must be transferred both to
and from the Tarari Processor; thus, the practical maximum rate
of transfer is just over 1 Gbps. So it is important to understand
for each algorithm what quantity of data is returned for each
byte of data that is transferred to the Tarari Processor.

Parallel Processing Techniques

Parallel processing techniques increase performance by
instantiating multiple copies of an algorithm, or a portion of an
algorithm. If, for example, a section of an algorithm operates
much more slowly than the rest of the logic, then splitting the
data path into two or more paths allows that section to be
replaced with multiple copies of itself. Assuming that the Content

Page 15 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Processing Engines have sufficient resources to accommodate
more than one copy, two copies of an algorithm in simultaneous
execution will finish the operation in half the time. It is necessary
to analyze the algorithm to determine whether it would benefit
from running multiple processes in parallel.

Pipelining/Agent-Chaining Algorithms

An algorithm well suited to the Tarari Solution will buffer
input/output, and balance input/output and computation by
taking advantage of pipelining and agent-chaining operations on
the Tarari Processor, as described in “ ”
above.

Content Processing Engine

Data Width

In some instances, wide data operations can be performed much
faster on the Tarari Processor where there are no hard limits to
the data width, as there are in the CPU. This allows the operation
to be completed in one cycle on the Tarari Processor, instead of
multiple cycles in the CPU. Alternatively, the Tarari Processor can
also operate on smaller or odd data widths, such as 8 or even 13
bits.

Key Questions

 Does the application require a given level of data throughput,
input bandwidth or output bandwidth? Is this a real-time
application in which bandwidth is a significant component of the
processing time? Can the PCI bus provide this bandwidth?

 Does the application have a high operation/byte ratio?
 Can the application benefit from parallel or multi-threading

operations by running multiple instantiations on the Tarari
processor?

 Can the application be pipelined? Is the next data operation
dependent on the result of the previous data operation?

 From the time that the first data are moved from host to PCI
bus, how long will it take to process the data and return the
answer? Can input/output be overlapped with processing?

 Can the application take advantage of wide/odd data widths to
offload more operations to the Tarari Processor?

B—Benefits of Offloading

BENEFIT: Host resources are freed up to perform other
operations, such as feeding even more data to the Tarari
Processor.

METRIC: Offloading is beneficial when the host processor can
perform other work while the Tarari Processor executes the
algorithm. The best candidates for offloading are those

Page 16 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

algorithms that not only execute much faster in hardware, but
also consume a large percentage of host processor cycles.

Freeing Up the Host Processor
It can make sense to offload algorithms even if there is no
acceleration. Assume, for example, that an application uses
100% of the host processor’s cycles, and a compression
algorithm uses 50% of those cycles. If the compression
algorithm were offloaded, then all of the host processing cycles
would be available, roughly doubling the performance of the
portion of the application that remained on the host processor. It
is also possible to design the agent and its software driver to
overlap input/output transfers with processing to overcome any
PCI bus overhead.

Taking Advantage of No Data Dependencies
Overall system performance is also affected when the host
processor algorithms have data dependencies on the offloaded
algorithms. If there are no dependencies, then the algorithms
can run simultaneously on host and Tarari Processors and there
is an opportunity to increase overall performance of the system.
Furthermore, if the application allows for overlapping I/O and
computation, and does not need to pause for the result of a
calculation being performed on the Tarari Processor before it can
continue executing, then performance benefits due to freeing up
host processor cycles can be even greater.

Calculating Overall System Acceleration
The total increase in system performance is a function of both
the amount of acceleration delivered by the Tarari Processor and
the percentage of CPU resources freed up as a result of
offloading the work to the Tarari Processor. To determine the
benefit that an application can realize from using the Tarari
Processor to “redeploy cycles” in this manner, it is important to
analyze the algorithm to see how much faster it runs in hardware
than it does on the host processor. Consider, for example, a
decompression operation which takes one full second to process
on the CPU, and which requires 80% of the CPU’s resources:

Process
results
.010 sec

Pattern-
match
.050 sec

Decompress data
.900 sec

CRC
.005
sec

Read
data
.035 sec

Page 17 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

With the operation offloaded to the Tarari Processor, that same
second of CPU time could look like this:

Read
data
.035
sec

CRC
.005
sec

Decompress
data
.850 sec

Pattern-
match
.050
sec

Hand off
results
.010 sec

Send to
Tarari
.005 sec

Process
results
.010 sec

Read in next sets of data
.950 sec

Read
data
.035 sec

So, while the decompression work itself on the Tarari Processor
went only slightly faster (.850 second instead of .900 second, or
a 1.06x improvement), the CPU reclaimed .950 second (20x
improvement), which it could devote to other operations. These
savings combine for a 21x improvement in overall system
performance.

As CPU load
shifts to the
Tarari
Processor...

...and task
completion
time
changes...

...suitability of
application and
overall system
performance
increase.

20x
improvement 100%

load

5% load

1.06x
improvement

work
performed
on Tarari
Processor

work
performed
on CPU

1 sec

Time

Decompression

Acceleration

CPU
Load More

Suitable

Most
Suitable

Suitable

The following formula, based on Amdahl’s Law1, shows how to
predict the overall system acceleration gained by accelerating a
portion of the application, if the amount of acceleration and the
fraction of host processor cycles that the algorithm consumes are
known:

Page 18 of 32 TAR_AL_AN_20031130

1 According to Amdahl’s Law, even as the performance of a single component of a system
(or application) approaches infinity, system throughput will still exhibit the combined
delays of the other components.

High-Performance Computing Algorithm Analysis

Overall
System
Acceleration

1
(1 - Fraction Accelerated)
+ Fraction Accelerated /
Amount of Acceleration

=

In applying this formula to specific examples, it becomes clear
how results can vary.

If 40% of an application can run 5 times faster, the system enjoys a
1.47x improvement:

• Fraction accelerated = .4

• Amount of acceleration = 5

• Overall system acceleration = 1/ [(1-.4) + (.4 / 5)] =
1.47

A second example, with a 5.26x improvement, shows that the best
algorithms to accelerate are those which both consume a high
number of processor cycles and run much faster in hardware.
If 90% of an application can run 10 times faster:

• Fraction accelerated = .9

• Amount of acceleration = 10

• Overall system acceleration = 1/ [(1-.9) + (.9 / 10)] =
5.26

Key Questions

 Does the application have an algorithmic kernel that represents a
majority of the processing time? Can the algorithmic kernel be
extracted from the application and offloaded to the Tarari
Processor?

 Can the application take advantage of the freed-up cycles by
executing additional tasks, such as post-processing the data
from the previous kernel run, or preparing data for the next
kernel run?

 Has the application been profiled to find out where the
bottlenecks currently exist?

C—Compatibility of Hardware Platform and Algorithm

BENEFIT: The Tarari Processor is suitable for algorithm
acceleration in most servers, appliances, and network devices
with a PCI bus interface. The more a given compute-intensive
algorithm can exploit the resources on a Tarari Processor, the
greater the benefits to system performance.

METRIC: Evaluate the hardware and algorithm in light of these
factors:

Page 19 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

• System Bus

• On-Board Memory

System Bus
The Tarari Processor comes in a PCI form factor. The PCI
implementation is a 32/64-bit, 33/66 MHz, half-length, 3.3v, PCI
card. The host system must have one of these PCI slots
available. Using a dedicated PCI bus provides the best
performance results.

On-Board Memory
The Tarari Processor contains 256 megabytes of DDR memory,
which provides a 64-bit/133MHz data path and is accessed
through the Content Processing Controller. The DDR memory
stores Content Processing Engine configurations and Content
Processing Engine-specific data. The Content Processing Engine
uses portions of the DDR memory for pre- and post-processed
data for each algorithm. Tarari reserves 8 MB of this memory to
store the Content Processing Engine configuration data.
Two Zero Bus Turnaround, Synchronous Static RAMs (ZBT
SSRAM), organized as 512KB x 18, are also available to each of
the Content Processing Engines. Each Content Processing Engine
is connected to two Zero Bus Turnaround memory blocks by
independent address and data lines operating at 133 MHz. The
local Zero Bus Turnaround memory is typically used by
algorithms that need a small amount of fast local memory,
because it has a much lower latency than the DDR memory. The
memory is available to the Content Processing Engine, and its
use varies, depending upon the implementation of the algorithm.
Developers have full access to the Zero Bus Turnaround memory
as local temporary data storage for either the algorithm or
scratch pad memory, where the requirements exceed what the
block-RAMs alone can support.

Key Questions

 Does the server meet the Tarari Processor’s physical
requirements? Will the chassis take a full-height, half-length PCI
card? Does the power supply provide 350 watts or more? Is
there adequate ventilation for the 25+ watts of power
dissipation? Does the fan have more than 20CFM throughput?

 There is 248MB of on-board DDR memory which can be split
between the two Content Processing Engines. This memory will
be used for input data storage, output data storage and possibly
intermediate data storage. What is the input/intermediate/output
data set size of the application? Does the data set fit within the
248MB of memory? If not, then can it be broken up into chunks
that will fit? Can it be “streamed” in and out, in a systolic
fashion, within the constraints of the DDR memory size?

Page 20 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

 The Tarari Processor2 features approximately 32 18Kbit block-
(internal) RAMs that can be used as intermediate storage inside
the Content Processing Engine. These block-RAMS have
interfaces that allow low latency access to data, variables and
coefficients. Does the algorithm/application make frequent use of
any data that can take advantage of this feature?

 How much of the data processing is sequential in nature? How
much of the algorithm requires random access to the data? If the
algorithm requires random access, then will the data set fit into
the on-chip block-RAM, or will it fit into the off-chip Zero Bus
Turnaround memory? Is the data interface to the Zero Bus
Turnaround memory wide enough to allow full processing speed?

 Is it possible to estimate the gate count (internal size
requirements) based on the width of the operators and the
number of arithmetic functions?

 Do most of the algorithm’s operations require integer or floating-
point math? If floating-point, then how much dynamic range and
how many bits of precision are needed? Can the data be
converted to integer? If so, then how many bits of precision are
required?

D—Dynamically Reconfigurable Hardware

BENEFIT: Reconfigurable logic enables cost-effective updates in
the event that protocols change and new standards emerge. This
could extend the time-in-market of OEM products through
multiple generations, by using the same core technology.
KEY TEST: If the hardware environment of the application is
subject to change, or if changing traffic profiles prompt changes
in the algorithms being accelerated, the Tarari Processor
provides the market’s most versatile solution.
An ASIC-based solution can quickly become obsolete with the
first change to an industry standard. Whereas manufacture and
update/upgrade of an ASIC solution will involve nonrecurring
engineering (NRE) costs and substantial time to deploy—
prototype, fault coverage, silicon design change, fabrication,
verification, manufacture, shipment, installation—the Tarari
Solution allows reprogramming of hardware using software tools
and techniques, without requiring expensive field upgrade or
production changes. Combining CPU technology with the
flexibility of programmable logic enables OEMs to rapidly deploy
solutions and to maintain those solutions more cost-effectively
than their competitors can.
Furthermore, as the most burdensome of cycle-burning
operations move from the host processor to the Tarari Processor,
it soon becomes appropriate to re-examine the load on the host

2 Versions 2.2 and 2.3.

Page 21 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

processor for other compute-intensive operations. For example,
if anti-virus and attachment scanning are the first applications
offloaded to the Tarari Processor, anti-spam and intrusion
detection will soon follow. With new agents pushed to
reconfigurable logic in the Content Processing Engines, the Tarari
Processor can accommodate such changes.

Key Questions

 Is it likely that the algorithm will evolve in depth or breadth? Is it
subject to the requirements of users, customers, other
applications or industry standards?

 After the first algorithm, will subsequent, compute-intensive
operations be offloaded to the same Tarari Processor?

 Are multiple users likely to use the same equipment for different
calculations? Can they effectively utilize the Tarari processor?

Page 22 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Algorithm Analysis Examples

1. Biotechnology Research

The computation requirements of genomic research are well
known to be different from those of many other traditional HPC
problems. The data is packed—2-bit or 5-bit representations of
proteins or amino acids—and must be compared with the billions
of other proteins or amino acids contained in the genomic
database. This computation can be accelerated dramatically by
passing the most compute-intensive processes to the Tarari
Processor, as the following analysis (along the lines of the
“A-B-C-D” outline of this paper) demonstrates.

A—Algorithm Acceleration

• The actual comparison comprises simple operations that
are extremely compute-intensive and can be executed in
hardware much faster than in software. A typical search
with 5,000 query elements against a target database of
2 billion elements can take up to ten days to complete
using a single 2GHz Xeon processor. This would have the
Xeon processor performing 100 million comparisons per
second.

• When offloaded to a 6 million-gate Tarari Processor, this
application would typically reserve 2 million gates for
“housekeeping,” leaving 4 million gates available.
Assuming that each comparison operation requires
20,000 gates, the Tarari Processor could perform 200
comparisons per clock cycle (4 million gates / 20,000
gates per comparison). Since the Tarari Processor runs at
100MHz, the processor could perform 200
comparisons/cycle x 100 million cycles per second for a
total of 20 billion operations per second. This is roughly
200 times the speed of a single Xeon processor.

B—Benefits of Offloading

• There is other work that the host processor can perform
while it awaits results from the Tarari Processor, notably,
preparation of the query and target data for the actual
search performed on the Tarari Processor and storage and
representation of the finished data. For older systems
with slower processors, this means that the Tarari
Processor could be added to each node of a cluster with
minimal incremental expense above the cost of the Tarari
Processor.

C—Compatibility of Hardware Platform and Algorithm

• The operations involved can be easily and profitably
instantiated in hardware on the Tarari Processor. In this
example, every computational unit of the Tarari Processor

Page 23 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

has been used and all of the block-RAM has been
allocated to the algorithm. Because the data has been
packed in bit-level representations, there are no
bandwidth concerns for moving data between DDR
memory and the Content Processing Engines, nor is there
a bandwidth issue for the DDR-to-PCI bus.

D—Dynamically Reconfigurable Hardware

• The algorithm, depending upon its implementation, may
take advantage of the ability to dynamically reconfigure
the Content Processing Engines. The algorithm could be
adapted to configure itself one way for large queries and
another way for small ones, and could be dynamically
changed based upon the size of the query.

• While certain biotechnology-related algorithms (e.g.,
Smith-Waterman) change relatively little over time, other
algorithms and applications can exploit dynamically
reconfigurable logic.

2. Cryptography Acceleration Agent Set

The overall performance of the Secure Sockets Layer (SSL)
protocol can be accelerated dramatically by passing the most
compute-intensive processes to the Tarari Processor, as the
following analysis demonstrates.
Certain of SSL’s characteristics are eminently suited to
acceleration by the Tarari Processor, as gauged by the “A-B-C-D”
outline of this paper:

A—Algorithm Acceleration

• SSL comprises some simple operations that are compute-
intensive and can be executed in hardware much faster
than in software.

B—Benefits of Offloading

• The operations to be offloaded consume a high
percentage of processor cycles on the host processor.

• There is other work that the host processor can perform
while it awaits results from the Tarari Processor.

C—Compatibility of Hardware Platform and Algorithm

• The operations involved can be easily and profitably
instantiated in hardware on the Tarari Processor.

D—Dynamically Reconfigurable Hardware

• SSL is based on standards and algorithms that change
over time.

Page 24 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

RSA

RSA (Rivest-Shamir-Adleman) is a public-key cryptographic
algorithm, which means data is encrypted using a public key,
and decrypted using a different, secret key. RSA is widely used
in modern cryptographic protocols, especially for the purpose of
securely exchanging keys for faster bulk-encryption algorithms,
which is its function in SSL.

The core operation of RSA is a simple but intensive arithmetical
computation: modular exponentiation of moderately-large
integer values. That is, for positive integers X, E and M, RSA
requires computing the formula:

XE mod M

where, typically, X ≥ 1,024 bits.
So, to analyze the RSA component of SSL in light of this A-B-C-D
model:

A—Algorithm Acceleration

Due to the complexity of performing modular exponentiation
(“modexp”) with several base-16 multipliers, it takes 2 million
CPU cycles to perform a single 1024-bit RSA operation. That
means that a CPU operating at 2GHz could complete 1,000
operations per second, assuming that the CPU was doing no
other processing at the time. Also, RSA calls in 512 bytes and
returns 130 for a total of 642 bytes. Assuming conservatively
that only one-third of the cycles are devoted exclusively to the
modexp operations—so, 666,000 cycles to process 642 bytes—
the number of CPU cycles per byte (>1,000 cycles per byte) is
much higher than the baseline for sending traffic across the PCI
bus (18 cycles per byte). Therefore, RSA is a good candidate for
acceleration.
The computation work in RSA takes place on the two Content
Processing Engines. Because the RSA agent can take advantage
of parallelism, each Content Processing Engine can accommodate
up to four modexp engines set up by the algorithm. Each
modexp engine has five processing elements, and each
processing element performs two 16x16 multiplications and four
16-bit additions per cycle, so the result is 80 multiplications and
160 additions per cycle.

B—Benefits of Offloading

In spite of the compute-intensive modular exponentiation,
relatively little data travels back and forth in RSA decryption. The
algorithm brings 512 bytes in for decryption in two transfers of
256 bytes each, performs its computations (during which there is
approximately 1.2ms latency), then returns two blocks of 65
bytes each. Server CPUs, already juggling priority among dozens

Page 25 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

or hundreds of other processes, can save 70-80% of their cycles
by offloading RSA decryption.
System performance, then, will benefit from offloading RSA to
the Tarari Processor because of RSA’s high demand for compute
cycles and low demand for bandwidth.

C—Compatibility of Hardware Platform and Algorithm

There are forty 18x18-bit multipliers in each Content Processing
Engine, of which capacity only 16x16 is needed for RSA. If no
other agents need to use the multipliers, the overall performance
of SSL is maximized by spreading the RSA operation across both
Engines, allowing RSA to use up to eighty multipliers, as we have
noted. One independent agent can be instantiated on each
Engine and the host processor can individually control and load-
balance the two agents.

Each of the two RSA agents uses under 1MB of DDR memory for
input and output queues. The host processor supplies the base
address of this region using an input/output write. The agent
requires, in each Content Processing Engine:

Resource on Content
Processing Engine

Number Required
by RSA Agent

Percent of Total,
Each Engine

18x18-bit multipliers 40 100%

18 kbit block-RAMs 8 20%

Lookup tables 7600 74%

Flip-flops 6600 64%

Digital clock managers
and clock nets

2 25%

D—Dynamically Reconfigurable Hardware

While RSA is not subject to frequent change as a standard, there is a
possibility of change in factors on which it depends. For example, the
Tarari Solution can easily accommodate key lengths of up to 2048 bits
for encryption and 4096 bits for decryption, adequate by today’s
standards. It could also accommodate an application that called for
much greater key lengths, although this would require changes to the
agent. By using software techniques and tools, a programmer could
effect the hardware changes required, an option not open to the user of
an ASIC-based solution.

More likely, a developer might want to load-balance different operations
between the Content Processing Engines by changing the Acceleration
Agent Set, or change the amount of resources on the Tarari Processor
dedicated to RSA in order to add other agents. The built-in flexibility of
the Tarari Processor also opens up to the developer the opportunity to

Page 26 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

change the mix of running agents (bulk encryption, DES, anti-virus,
XML, etc.) on the Content Processing Engines as traffic profiles change.

Page 27 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Appendix A—Summary of Guidelines

A—Algorithm Acceleration

• Accelerated parts of applications can be sub-divided and
expanded to operate in parallel.

• Multiple algorithms can be pipelined/chained to make the
best use of available resources.

• Bandwidth requirements of algorithm data and control
plane functions do not exceed PCI bus bandwidth of 4.267
Gigabits per second.

• The application’s optimal throughput cannot be achieved
by a software implementation, but is possible to achieve
the expected throughput with hardware acceleration.

• The algorithm requires a high number of host processor
cycles to process each byte of data.

• There are no other bottlenecks that could prevent the
application from running faster, even if some algorithms
are offloaded to hardware.

• Data can be pipelined (the output of one algorithm can
immediately be used as input to the next algorithm), or
fewer bytes of data can be sent back to the host
processor than are sent to the Tarari Processor.

• The size of a typical block of data is large, or multiple
small blocks can be aggregated.

• The application can benefit from running multiple
simultaneous threads.

B—Benefits of Offloading

• The application can tolerate the latency introduced by
transferring data across the PCI bus.

• The host processor can perform other applications while
waiting for the Tarari Processor to process offloaded data.

• The algorithm to be offloaded consumes a high
percentage of host processor cycles relative to other tasks
that the system is performing.

C—Compatibility of Hardware Platform and Algorithm

• The system has at least one 3.3v-signaling-level PCI slot,
preferably a dedicated 64-bit/66 MHz slot.

• The algorithm can be implemented in the two Content
Processing Engines of the Tarari Processor, using their
internal and external resources.

• The algorithm to be offloaded can benefit from as much
as 256 MB SDRAM + 4 MB ZBT SSRAM local data storage.

Page 28 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

D—Dynamically Reconfigurable Hardware

• The algorithm has characteristics that are likely to change
over time.

• The design will benefit from different algorithms being
swapped in and out of the Content Processing Engines as
data characteristics change.

Page 29 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Appendix B—Advanced Topics

Number of Gates and Configurable Logic Blocks Required
Each Content Processing Engine on the current Tarari Processor
includes these hardware components3:

• 40 18x18-bit multipliers

• 40 18 kbit block-RAMs

• 1280 configurable logic blocks

• 4 clock managers
To determine whether an application or algorithm is suitable for
acceleration by the Tarari Processor, estimate the hardware
requirements of the algorithm. Estimating the extent to which a
given algorithm can exploit these hardware requirements is a
difficult task, but consider these factors:

1. Each internal block-RAM is configured in variable widths or 1, 2,
4, 9, 18, or 36 bits that can be concatenated for greater width
and/or depth. Estimate the amount of “scratch pad” storage
required for small look-up tables, FIFOs, stacks, rate buffers,
register arrays, staging buffers, and complex data structures.

2. Estimate the required number of flip-flops by counting the
storage registers needed to store intermediate and final results.

3. Find the number and width (number of bits) of major logic
functions that the algorithm requires.

4. To account for management interface overhead, multiply each of
the foregoing results by 1.3 to arrive at the total number of flip-
flops and look-up tables required.
Maximizing the use of these resources, and exploiting the parallel
processing and pipelining/agent-chaining features of the Tarari
Processor, provides the best increases in overall application
performance.

3 The current release of the Tarari Processor uses Xilinx* XC2v1000 Field Programmable
Gate Arrays. Future versions may have different characteristics.

Page 30 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Legal Information

Tarari is a trademark or registered trademark of Tarari, Inc. or its subsidiaries in
the United States and other countries.

Information in this document is provided in connection with Tarari products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. Except as provided in Tarari's Terms and
Conditions of Sale for such products, Tarari assumes no liability whatsoever, and
Tarari disclaims any express or implied warranty, relating to sale and/or use of
Tarari products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright, or other
intellectual property right. Tarari products are not intended for use in medical,
life-saving, or life sustaining applications. Tarari may make changes to
specifications and product descriptions at any time, without notice.

Copyright © 2002-2003 Tarari, Inc. All rights reserved.

* Other names and brands may be claimed as the property of others.

** Performance tests and ratings are measured using specific computer systems
and/or components, and reflect the approximate performance of Tarari products
as measured by those tests. Any difference in system hardware or software
design or configuration can affect actual performance. Buyers should consult
other sources of information to evaluate the performance of components they are
considering purchasing. For more information on performance tests, and on the
performance of Tarari products, contact us as indicated below.

Page 31 of 32 TAR_AL_AN_20031130

High-Performance Computing Algorithm Analysis

Page 32 of 32 TAR_AL_AN_20031130

High-Performance Computing
Algorithm Analysis

A Tarari White Paper

Additional information: info@tarari.com
Internet: http://www.tarari.com/
Telephone: (858) 385-5131
Fax: (858) 385-5129

Tarari, Inc.
10908 Technology Place
San Diego, CA 92127-1874
USA

	Executive Summary
	Overview of Tarari Solution
	Content Processing Controller
	Content Processing Engine
	Zero Bus Turnaround, Synchronous Static RAM (ZBT SSRAM)
	Double Data Rate, Synchronous Dynamic RAM (DDR Memory)
	Workflow on the Tarari Processor

	Evaluating Applications for the Tarari Processor
	A—Algorithm Acceleration
	Determining the Algorithm Processing Time
	Calculating the PCI Bus Transfer Time
	Other Factors
	Algorithm Input-to-Output Ratio
	Parallel Processing Techniques
	Pipelining/Agent-Chaining Algorithms
	Data Width

	Key Questions

	B—Benefits of Offloading
	Freeing Up the Host Processor
	Taking Advantage of No Data Dependencies
	Calculating Overall System Acceleration
	Key Questions

	C—Compatibility of Hardware Platform and Algorith
	System Bus
	On-Board Memory
	Key Questions

	D—Dynamically Reconfigurable Hardware
	Key Questions

	Algorithm Analysis Examples
	1. Biotechnology Research
	A—Algorithm Acceleration
	B—Benefits of Offloading
	C—Compatibility of Hardware Platform and Algorith
	D—Dynamically Reconfigurable Hardware

	2. Cryptography Acceleration Agent Set
	A—Algorithm Acceleration
	B—Benefits of Offloading
	C—Compatibility of Hardware Platform and Algorith
	D—Dynamically Reconfigurable Hardware
	RSA
	A—Algorithm Acceleration
	B—Benefits of Offloading
	C—Compatibility of Hardware Platform and Algorith
	D—Dynamically Reconfigurable Hardware

	Appendix A—Summary of Guidelines
	
	A—Algorithm Acceleration
	B—Benefits of Offloading
	C—Compatibility of Hardware Platform and Algorith
	D—Dynamically Reconfigurable Hardware

	Appendix B—Advanced Topics
	
	Number of Gates and Configurable Logic Blocks Required
	Legal Information

